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Attenuation of Oscillatory Pressures in Instrument I-^s' 
By Arthur S. Iberall QQ 

:.. :.^     A theoretical investigation has been made of the attenuation and lag of an osdiMo^ 
pressure variation applied to one end of a tube, when the other end is connected to a pressure- 

- ""^Arel^STtiry theory based on incompressible viscous-fluid flow ^ first developed. 
The dL Sylofution is'then modiSed to take into account compr^ibUity; Smte p^^ure 
amplitudes; appreciable fluid acceleration; and finite length of tubmg (end effects). Account 
is taken of heat transfer into the tube. .    . ■    „,„v,t 

The complete theory is derived in an appendix.   The results are summamed m eight 
graphs in a form convenient for use in computing the lag and attenuation of a sinusoidal 

.    i „       ,^    oscillation in a transmission tube. 

\: J: ;    1. Introduddcm 
In many industrial processes, it is necessary to 

know or to utilize the pressure at one or moie 
points in a fluid conduit.   It is not always possible 
to connect an instrument directly into the conduit 
at those points.   Instead, recourse must be had to 
remote indication or control.   In the case that a^ 
fluid is used for transmitting the pressure, it ii 
often of interest to the designer" or user of 8U<^ 
systems to know then- response to variations in 
pressure.   At the present time, the only solution 
easily available to the engineei is generally based 
on an elementary theory that considers the system 
as equivalent to an R-C electrical network.    (See, 
for example, NACA Technical Note 593, Pressure 
drop in tubing in aircraft instrument installations, 
by W. A. Wildhack.)   The main defect of the 
theory is that it does not provide criteria for the 
limits of its applicability. 

In the present paper, a relatively complete treat- 
ment is given for the transmission of oscillatory 
pressures in tubing. Primary consideration is 
given to simplifying the design of high-quality 
transmission systems for relatively low frequencies. 

The elementary solution is derived and then 
extended to apply for oscillatory pressures that are 
tn appreciable fraction of the absolute mean 
pressure, for appreciable frequencies of oscillation, 
and for tubing short enough to require end cor- 

1 Thl5 work was supported by the Offlco of Naval Research under a project 
on "Bnslc Instrumentation for Scientific Research." 

rections.   The effect of heat transfer in m«^yiui]| M^ 
the oscillatory response of the tube is also dis-j;>J^ 
cussed. 

The chief utility of knowing these corrections is 
that it permits the designer to choose the size of 
tubing for specific applications with greater con- 
fidence than can otherwise be done. 

In the next section, the elementary theory of 
transmission lags is developed, and the corrections 
are discussed. The complete theory is presented 
in graphical form for the convenience of the de- 
signer. A number of examples of the use of the 
design charts are also given. This section is then 
followed by a mathematical appendix in which 
the more exact results are derived. All math- 
ematical symbols used in this paper are defined in 
section II and also when they are first used. 

n. List of Mathematical Symbols 

A=tube area. 
C=velocity of sound. 
D=mside diameter ^' tube,' 
£= elastic modulus of tubej 
F= correct ion functions. 
E;= thermal conductivity of fluid. 
L=tube length. 

M=mas3 flow. 
iV--=dimen3ionl6ss parameter of fluid regime. 
Q=\olumetric flow. 
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12=a volume ratio. 
B,=Reynoldfe number. 
r= absolute temperature. 
V=in9trument volume. 
6=compressibility factor for liquid. 
c=any arbitrary constant. 

c,=specific heat of fluid. 
/= any arbitrary function. 

, g^& Bessol function argument. 
fc=a Bessel function argument. 
jfc=<;ompres9ibilitj of a liquid. 
l=(3ntrance length. _     .    . 

m=exponent of "polytropic" expansion m m- 
strument volume. 

n=exponeT)t of "polytropic" expansion m tube. 
35=pres9UTe. 
s:=tube wall thickness. 
t=time. 
«—axial velocity. 
i=iudal distance along tube. 
y=a dimensiooless axial distance vanable. 
2=dimen9ionle3s parameter of fluid regime. 
7=ratio of specific heats. 
5=phase angle. 
ij=den3ity ratio. 
X==time constant. 
ft=fluid viscosity. 
v=kinematic viscosity, 
f ^fractional pressure excess. 
p=fluid density. 
(r=Prandtl number. 
<^=velocity potential. 
x=attenuation factor. 
^=rattenuation parameter. 
(o=angulax frequency. 

m. Elementarv Theory 

Fi.v.u-c 1 is a schematic drawing of the system 
iKat' will be discussed throughout the paper.   A 
tubo transmUs fluid pressure from a conduit to 
a   pressme-sensitive   instrument.    The   conduit 
«nplies an oscillatory (sinusoidal) pressure to the 
entrance of  the transmiasiou  i-ao^.     ^ne  luoe, 
which transmits the pressure, is charactenzed by 
i<   constant cross-sectional  area and its length. 
Tl'( pressure-sensitive instrument, which receives 
»'n,.   nressiirc,   is   charactcri-/ed   by   its   enclosed 
vol-smr.    It. is assumed that if the walls enclosing 
t,be instrument volume arc flexible (either clastic 
(,r nisloii-likc), the cncbscd volume can be re- 

placed by a larger equivalent rigid volume that 
wUl store the same mass of fluid per unit pressure 
change. It is further assumed that tho pressure- 
sensitive inst.Timent will be so chosen that its 
indication is independent of the frequency of 
expected pressure oscillations. 

.In deriving the elementary theory, it is assumed 
that PoiseuUle's law of viscous resistance holds ai 
each point ui the tube; that the fluid is incom- 
pressible in the tube; that the sinusoidal pressure 
oscillations at the begmning of the tube are ot 
small amplitude compared to the mean absolute 
nressure; and that, if the fluid is a gas, it exp^-nds 
"and contracts isothermally in lbs instrument 

volume. 

I_= 
V—^__ 

UJ 
■:3J 

FiQUM   1.   Sciu'^natic  diagram  of a fluid  transmissim 
syiUm U-comuit, S-tran»mx>>Bion tube, 5-pr«sur* .rwirv- 

p-pO+Ap CDS «. 

The same assumptions appUed to an incom- 
pressible fluid (e. g., a liquid) lead to the conclusion 
that there is no loss in amplitude or lag m a hqum- 
fiUed system as a liquid would not expand or 
contract m the instrument volume. 

We may write 

dx 

for Poiseuille's law, and 

128 ^to n 

 A^ 

(0 

(2) 

for the equation of continuity.   Here 
p==instantaneous pressure at miy pomt m 

the tube 
2=distance along the tube measured from 

its entrance 
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;io=mean fluid viscosity 
Z?= tube diameter 

•   <J*=-volumetric flow at Sny point in the tube 
p=ihBtahtaiiebu8 density at any point in the 

'■ ■ ■ ■   tube  -■■='    '   ' • ■   '■'-'■ 
Mi=ina68 flow at any point in the tube 

i;f&4;^ii:cro88'fl6<5tional area of the tube 
<=time. 

We infer from the equation of continuity and 
the assumption that the fluid is incompresfjible in 
tli3 tube (i. e., t)p/2«=0) that the mass flow, and 
thorctoro the volumetric flow, does not vary along 
the tube, but at most varies only with time (the 
fluid motion is piston-like). 

By differentiating eq 1, we then obtain 

^=0 

along the tube. 
Our boundary conditions are that at a=0 

(3) 

T'=2^0+Ape i^t (4) 

a sinusoidal pressure variation about the mean 
pressure, and that at r=L 

^    poOt 

bv        128 /lo rt 
I ^5) 

The first line of eq 5 expresses the rate at which 
a compressible fluid entering a rigid volume builds 
up pressure, whereas the second line of eq 5 states 
that the flow mto the volume is limited by the 
pressiiro gradient at the end of the tube.    Here 

7;o=mean pressure at the entrance 
Ap=&-/).plitudc of the pressure oscillation at 

the conduit 
y=instrument volume 
CO=angular frequency "T)f the pressure oscil- 

lation 
L=length of the tube. 

!(, !;; coitvonipnt to introduce a new variable ^, 
the fractional pressure excess, defined as 

^       Po 
(0) 

so that eq 3, 4, and 5 become, respectively, 

5*£ 
ax- -0 

atx=0 

and at x=L, 

£=fo«'"', 

128 MO y ^i 

C7) 

(8) 

'Zbi 

(9) 

where 

^      128 Mo J^ V 

=32 Mo 

■Po m » V 
AL 

(10) 

Here 

{ =,=fractional pressure excess 
Jo=ampUtude of the fractional pressure ex- 

cess at the origin (=Ap/po) 
X()=a time constant of the system. 

It is of farther convenience  to separate  the 
pressure excess into a part that varies with x and 
one that varies with t. 

Let 

£=fV-', (11) 

where I is the maximum amplitude of the pressure 
excess at any point of the tube. 

Our equations then become 

at x—O, 

an d at 2=/-- 

£ = &, 

di ^ow -r 
dix~   'L ^^ 

(12) 

(3 3) 

(14) 
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The solution of eq 12, which satisfies eq 13 and 

14, is . 
l+\,w(^l-j)i 

l=5o i+\)^; 
(15) 

The ratio of the amplitude of the pressure exc^s 
at the end of the tube to that at the beginning of 
the tube is then given by 

rV. Discussion of CorrectionB 

The assximptions maxie in the elementary theory 
»xe restrictive, and in the appendix we shall modify 
them, one at a time, untU finally we amve at a 
complete solution that accurately takes mto ac- 
count all first-order phenomena, and partially 
takes into account second-order phenomena. 
Complete results are presented in convenient, 
graphical form in figures 2 to 9. 

where 

Here 

Xo=XoW. 

(16) 

(17) 

{i,=maximum   amplitude   of   the   pressure 
excess at the instrument volume 

Xo=an attenuation factor. 

The real part of eq 16 is the attenuation in 
amplitude of the pressure excess, whereas the 
imaginary part is the phase h^, or 

tan 5o= 

ii+3gi»(, 
c—Xa,     ) 

FIGURE 2. Amplitude ratio of the fundanmUal koJioU »"" 
a volume ierminaUd tube as o function of a parameter 
proportional to frequency (xn) for varioun ratios of instru- 
ment volume to tube volume {xrJxro) :=;(« ^aroe darnp-.nr 

(18) 

where So is ths lagging phase angle. 
We will regard eq 18 as the elevaentary solution     ^^ 

of our problem.   It indicates that a transmission 
system is characterized by a time constant \),     g^ 
wh^ch can be computed from a knowledge of tbe tn 
dimensions of the tube, the internal volume of g eo 
the end dsvicc, and tV c; average conditions of the § 
gas in the tube; and an attenuation factor xo, for ^40 
each   angular  frequency,  from  which  one  can e 
compute the attenuation and phase lag in a tube.     20 
Tbc tube dimensions and the instrument volume 
f I'-nish tbc analog ".o the resistance and capacitance 
of an electrical network. 

:i principle, although difTicull in practice, from 
a !:now?.cdge of the rcspoTisc to a sine wave, one 
cfr:! ol)tivin tiu; response to 3q;nre waves, step 
ftiaclion, etc., -hy Fourier analysis. 

FiauHE 3.    Phase lag of the fundamental (ao)o in a vohinie 
'  iermincled tube as a function of a parameter proportional 

to frequency (XTO) for various rotios of insiriimcri volume 
to lube volume (XIO/XTO) uiiih tar;     'arrpiw, (r<T). 

joaxnal oi Sssenrch 
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FiouR* 4. Amplitudt «»<«> 0/ the fundamental lloilU] »»> 
a volume krmirMted tubt ai a function of a parameter 
proportional Ui frequfnet/ (xn) for eariov* ratioi of inttru- 
meni volutnf to tube volume (xitixn) ond for two valuee of 
epeeifie heal ratio (y) teitk int^trmediate damping (*=> 
0.26). 

 . T"i: , T~a. 

FiflURE S. Phaee lag of the furuiamental (to) in a voiume 
terminated tube oi a function of a parameter proportiottai 
to frequency Ixn) for variout ratiot of initrument volume 
to tube volume (xio/xn) ajwf for two values of eptcifie 
hsat ratio (7) wrtft infermedtatr damping (»««6,26), 

-, T"i; iT-S. 

till/C 

FinuRK 6, Amplitude ratio of the furKiamenlal IloL/fe| in 
a voiume terminated tube aa a function of a paramtler 
proportkiiiol to fregueneu (.uLjC) for variout ratiot of 
instrument volume to tube volume (xi/x r) with Uille damping 
(z>im). 

Ul/C 

FHIUBD 7, Phaen lag of the fundamental (to) in a volumt 
(i:rminated lubt at a function of a parameter proporttonal 
to frtguency (aLfC) for variout ratioe of instrument 
volume to tube volume (xtfxr) indicating the dijjerenee 
bittoeen no damping ((Yxn/10]'*='0) and email damping 
((yxi»/181** = l) for ttoo taluet of tptnfie htat ratio (Y) 
with tmall damping {t^lOQ). — 

.T-Il- . T>2,   For curved lines 

lines v^ V* •l;tori«U(lttrml(M 

Atlenuctiion of PrsBsurt* in Tubes 

FiouiiE S. Riilative amplitude of the double harmonic dis- 
loriion {|{iz,/ifol(i/i;o) i™ " I'oiume lerminrded tnhe aa a func- 
tion of a parameter proportional to frequency (xro) for 
varioui- ration of innlrumcnt voUime ta tube vobimf. (xniXn) 
with targe damping («:^1). 

B9 
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FiouBB 9. Phaie Itad (an mea»urtd on the fundamental time 
awfc) of the doubk harmonic dittortion fii)o in a polume 
itrminated tube at n function of a parameter proportional 
to frequency (xro) fo-/ varioue ratios of initrumeni vdume 
to tube vetume (xnixn) vrith large damping («<1). 

The factors that must be taken into account 
are: 

1. Compressible flow in the tuhe.   The effect of 
.>u!u CGinproSSiuUitjr is to iutrOuaOo a tiiilci voTv 
stout auuwJrreaJhniding^HlUsuuation factor (Xr, XT) 

depcsiniing on^e tuba Yoluino in addition to the 
ahrai dfitsssading on ths inRtrnmftnt' vofvirrte (The 
time constant and attenuation factor depending 
on t'A^ lualrauioub vulume will be referred to as 
Xr and X; htinceforili uiafead^f Xo and xb). in 
terms of the deetrioal uidog, the tube volume 
represents a distributed capacitance in addition 
to the equivalent capacitance of the instrument 
volume. 

2. Finite pressure excess. The eflfect of the ap- 
plication of a finite pressure excess to a compress- 
ible fluid in a tranamission tube is to introduce 
harmonic distortion and to modify the mean pres- 
sure. However, tljio attenuation of the funda- 
mental is essentially,: indopondent of the magnitude 
of the pressure RXQAIISS. The porcontago of distor- 
tion is approximattily proportionpl to the applied 
pressure excess. 

3. Fluid accekraiion. Tho effect of fluid inertia 
is to modify tho time constants of *h(s system. 
Both tho attenuation of the fundamental and the 
magnitude of hnnnonic distortion are affected. A 
dimensionless parameter z analagous to tho "Q" 
of an electricfl.1 system characterizes the fluid 
regime, and dcterminea whether fluid inertia may 
or may not bo neglected. 

Wien  fluid inertia i^ negligihle. n (rfliismiBsion 

tube acts like a highly damped system; when fluid 
inertia in largo a transiiuHHioii tubo acts like an 
undamped system, and elcmontfiiy acoustic theory 
is applicable. 

4. Finile length of tvbing. The effect of lliiid 
acceleration at the ends of tho tubo results in 
further distortion of wave form, which must bo 
taken into account in short tubes. 

5. Heat conduction. If there were no. beot (.r>i,ris- 
sci fioiu ou.aidc tho tubo to inside, the osciikaory 
processes would take place adiabatically; if there 
were perfect heat transfer into and through the 
tube, the processes would take place isothermally. 
The effect of finite heat conduction is to make the 
real process occur in betW(5on these extremes, 
although in a mther complicated fashion. At low 
frequencies the process may be regarded, as 
isothermal. 

Although an exact result is given in the appen- 
dix, it is advantageous to utiUze the thermody- 
namic equation of condition, discussed in the 
following section, for elucidating the problem of 
attenuation in tuintig. 

V. ThermpdynamiG E«^iuatioa of Condition 

in the case of au oscillatory variation of fluid 
' iio nT, tuC squatkCQ relatiiig the lliei'iuuuyuHiiiic 
parameters of the fluid He between the adiabatic 
and the isothermal equations of condition. For 
iiigh frequencies, as in sound waves, it is well 
knonn that the adiabatic equation holds. How- 
ever, for visftously damped motion, the adiabatic 
relation is not, in general, attained. 

For a gas, we assume and justify in tho appjendix 
the processes nan be described as "polytropic", 
that is, characterized by a constant exponent n, 
in the expression 

with 

p^Cf," \ 
(19) 

wliore 
n=e.xponent of the "polytropic" e.xpansion in 

tho tube 
7=ratio of specific heats 
i7=donsity ratio (P/PQ) 

Po—average density in tho tube. 
c IB tiaed to indicate any constant. 

Tbo viscosity of gase.q \fi independent of  tho 
pressure, and, as an approximation,proportional to 
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tho ftbsf>lute temperature. (The more riguroua 
approximafion is that the viscosity is proportionel 
to lT]^"j[l+clT] but over a small rango this can 
ho ftpproximflted by tho tempprature to & povvor 
close to one. For example, for air at .room tempera- 
ture, a powar of 0.8 fits e.xperimentftl data quite 
well. The difference from unity is unimportant 
for our purpose.) 

Therefore, 

— =1}     » 

(20) 

follows from the gas laws and eq 10. Here n is the 
instantaneous fluid viscosity. 0.nd T is the absohito 
temperature. 

Equations 19 and 20 thus express the variation 
of viscosity, density, and pressure in a polytropic 
process in a gas.   At low frequencies, tho poly- 

rrv~ mnsfw 

condition in a polytropic proc^ is given by 

where 

For liquids, however," y lies so dose to unity 
that ^rc may aatisfactorilj assisaie fii=l. 

Equation 21 can then be written in the form 

/ n-l+*i, (22) 

wliere 6=8 compressibiUiy factor ('^k^a) 
A'«=liquid compressibility at average condi- 

tioi)8 in tin? tube. 
The. variation in viscosity of a liquid over a sltiall 

range of temperature cun be neglected, so that in a 
polytropic process 

M=;%. (23) 

Actually the implication in eq 22 aiid 23 is that 
in a liquid-filled transmission line, the effect of 
conditions appreciably different from isothermal 
ia negligible. 

It is also necessary to take into account heat 
exchange at the pressure clement. 

For an isothermal process with a gas in the 
inatrtinient volume, we previouaJy siwumefi thfit 

represents the influ.x of fluid. If, instead, a 
polytropic process in the instrument is aasumeJ, 
charnctcrized by an exponent, m (the heat ex- 
chimgo may differ in fiie tube and instrninent 
volume so that vi is not necessarily equal to n), 
then eq. 5 should be modified to 

(9A) 
Q= mp ht 

<2= _ n V dp 
m p dt 

: or to 

Q- 
Vbbv 

'pa<)t' 
(25) 

for liquids. 
If the fluid is regarded as a spring, the e.xponent 

of tho polytropic process for a gas, or the com- 
pressibility of a liquid may be viewed as quanti- 
ties that make the fluid spring stiffer in the case 
of gases, or almost infinitely stiff in the case of 
liuuiiis.   It i.? sho^v^ in the &""9ndix thst those 
«<^l-»i-^n*.«   n-.mnnn*i4n   winrlif-rr   4l^n    timn   n^v>n4-n n«...   ^t 

the tube and volunis. 

VI.  Gouorul rruuuuujLfj,   wiiu aJLamplo'd, 
for  Cempufing Transmitied Pressure 

The computation of the attenuation ftnd phofie 
Ifwf st nnp flnd of s trarwniiaalon ti>b« of a sinusoidal 
pressure variation imposed at the other end can be 
carried out with the aid of figures 2 to 9, These 
figures are based upon the theory lai^ely developed 
in the appendix. The computations are made 
prunarily for tho atuenuation at the fundamental 
frequency. An estimate of the distortion arising 
from finite input amplitudes with high dampiiig 
is made in the appendix. The computation for 
the first harmonic in the distorted output can be 
made with the aid of figures 8 and 9. An outline 
of procedure for making computations follows. 

1. Compute 

2 = 
D' 
4   f-o 

(26) 

Q' dt 

a, diinensionless parameter of the fluid regirae'thRt 
characterizes the amount of damping preaent. 
Wlien this parameter is less than 1 (largo damp- 
ing), use figures 2 and 3; wJien greater than 100 
(i^mall dampinfr'), use figures 6 .and 7     I'^or iiitfir- 
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mediato values of thia pHranieter, tise figures 4 and 
5 as an aid to interpolation. 

2. Compute tho attenuation factors 

XTO" m\Al)' 
for a gas, or 

/' \5 

V 
"-2Z 

(27) 

(28) 

(29) 

(30) 

for a liquid. These quantitira, xn and xia, are 
factors based on the tube volume and instrument 
volume, respectively. The zero subscript means 
that they are values for the caeo of large damping, 

3   Compute tho input pressure excess 

An ^—~ • y (31) 

4a. For values of x 1«»flfa flmn i an#Af. 4;n.,.^A o 
with xn and Wxro to find the amplitude ratio 
llot/lpio and enter figure 3 t^ finr? the laigiijg phase 
-"6*'- \<V/0 

4b. ThA nilfctiKl',  nwtoBniw  av 

puted from 
thsn   QtiiH- 

iwiw—to ^   ■ (32) 

6a. For values of z greater than 100, compute 

#-[^]' (33) 

For liquids, aaauwe 7=1, 
The quantities xi and xr are the attenuation 

factore for the caae of low damping. 'With low 
damping, it is convenient to use the dimcnsionless 
parameter MX/C, which is proportional to fre- 
quency, as tho indopcndflnt variable. 

5b. Enter figure 6 with id.jC and XXIXT to find 
the amplitude ratio |Wlol and enter figure 7 to ' 
find the. lagging phase angio ^. It Ja neccMfiry 
to estimate the phH.-^e angle by interpolation. For 
very small values of xm compared to I, the lagging 
phase (Higlo is rero up to tlif. first rpsonnncc-, In 
figure 7, curves havp been pr^^.qcntc-d to iiuJicRr.? 

tho phase angle for bxrolW^^Onnd [■yxW16J"*=-l 
One may linearly intcipokte between these curves 
on tho baaia of bxnU^V'^ for values lying between 
0 and 1. 

6a. For values of z lying between 1 and 100, 
one may interpolate between tho values of-ampli- 
tude ratio and lagging phase angle obtained in 
st^p 4a and those obtained in step 5b by the use 
of figures 4 and T). En(or figurps 4 nnd .«> wUh ;._^ 
and yaJxTo to find the amplitude ratio j JOL/{OI and 
lagging phase angle to- These are the values for 
^=6.25. In order to interpolate, plot a logarithmic 
graph with z as abscissa and the amplitude ratio 
or phase angle as ordinate. Plot the values from 
step 4a at 3=1, from step 6a at 2=6.25, and from 
step 6b at 2=100, draw a curve through these 
three points, and interpolate on this curve for the 
intermediate value of z. 

1. Computation of Doubl« Frequeppy Diatortion 

1. This computation represents only an esti- 
mate of the double frequency distortion and is 
dtrictiy vahd only for vahies of « less than I. 

Compute xsro and Xiolxn- Enter figures 8 and 
9 to obtsln the relative amplitude ratio lltE/fblo/^ 

quenoy wave. The leading oha8e^a,nglfl Is m^m- 

ured on the time scale ofthe fundamental, where 
both tho fundamental and double frequency waves 
are cosino t^rnis. 

2. Compute thi pressure excess of the double 
frequency ||,i,|ofrom - 

Iii6l (35) 

w/i 

The various quantities In the Rbovft nAction are 
defined below: 

A'o'^mean fluid viscosity, 
>'o=mean kinematic viscosity. 
lJo~niean fluid pressure. 
p.=ambient pressure external to the tube. 

Ap=amplitude of the applied sinusoidal pressure. 
_ fo== applied fractional pressure excess, 
foi,=pressure excess of the fundamental at tlie 

instrument volume. 
|it=pressure excess of the double frequency at 

tho instrument volume. 
^o=-lftgging phase angle of th<> fundftmcnfHl at 

tho instrument volume. 
Si^leading phase angle n! the double frequency 

at (ho instrument volume. 
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Jto=mean fluid compressibility. 
V=equivalent rigid  internal  volume  of  the 

instrument. 
A=intemal cross section of the tube. 
D=intemal diameter of the tube. 
s=wall thickneiss of the tube (assumed small 

compared to the diameter). 
£:= elastic modulus of the tube material. 
X=length of the tube. 
C=velocity of sound in the fluid. 
7=ratio of specific heats of the fluid (assumed 

to be one for liquids). 
m=coefficient of the polytropic process in the 

instrument volume.    (In lieu of other 
information, it may be assumed to be 
one.) 

z=dimen3ionless parameter characterizing the 
fluid regime. 

'   6,==angvilar frequency applied. 
Xr= attenuation   factor   based   on   the   tube 

"vtJlume. 
X/= attenuation factor based on the instrument 

volume. 
Subscript T rofcrn to paramotore based on tube 

volume; subscript / refers  to  parameters 
based on end volume; 0 or 1 following a 
r or / denotes the  fundamental or first 
harmonic; an end subscript of 0 denotes a 
value for the case of large damping. 

The attenuation of the fundamental may be 
validly computed from the formulas developed in 
thia paper when 

"0 

5D 

v»u 

,<1 I 
^<1 

(36) 

The second Lurmonic distortion, which was only 
estimated approximately, may be validly com- 
puted from the formulas developed when 

41/0 
(37) 

nnd when the applied pressure amplitude is sufti- 
'ontly small at the applied frequency to permit 

iamin;ir flow.    3. Compete the mean pressure in 
tho '•! itrument volume, whicb. is lai^er than the 
jnoii , ;!ressi!r(3 at the tube cn'iT.ance by 

^:oA7>[l-|.Wt,iol/-l 

2. Examples oi Coaputations 

The calculation of attenuation by the general 
procedure outlined above will be illustrated by a 
number,of examples. .   -j 

(a) What is the longest loagth of )U-va..-\Ds,idG- 
diameter tubing that can be used to trarsmit air 
pressure to a Bourdon pressure gage (equivalent 
internal volume assumed neghgible) up to a fre- 
quency of K c/s with a loss in amplitude not 
grektcr than 25 percent? ^'Vhat will be the double 
frequency distortion? For air assume /xo=2X10~* 
poise, p«=l/6 stokes, m=l, 7=1-4, Po^lO* 
dynes/cm* (atmospheric pressure), angular fre- 
quency W=T. 

Using eq 26, 2=1.1 (computed in consistent 
units). This value is sufficiently close to unity to 
permit the use of figures 2 and 3. Enter figure 2 
with |W&lo=0.75 and pao/xro=0, since the in- 
strument volume is negligible, to find xro=2.1. 
Compute L in eq 27 to be 160 feet. 

Entering figure 3 with xro=2.1, to find that the 
maximum phase lag will be 53 degrees. 

Entering figure 8 to find that tho relative ampli- 
tude of the double frequency Uij:,/£o|£i/fo==0-35. 
For initial pressure excesses of 0.1, 0.3, and 1, 
respectively, the double frequency amplitude, rela- 
tive to the input amplitude, will be 3K, 10%, and 
35 percent, while the mean pressure will increase 
0.0010, 0.010, and 0.11 of an atmosphere, respec- 
tively. 

(b) "What lengths of O.l-in.-inside-diameter tub- 
ing (nominally ^e-in.-outside-diameter tubing) can 
be used for quality transmission of air pressure for 
frequencies up to 1, 10, 100, 1,000 c/s into pressure 
instruments with equivalent rigid volumes of 0.1 
and 1 in.'? 

We will define quality transmission au that in 
which there is no more than db5-percent change 
in fundamental amphtude or more than ±30'' 
phase shift (whichever is more stringent). 

Assume that W)=2X10"* poise, i'o=l/6 stokes, 
TO=l, 7=1.4, Z?=0.1 in., ^=0.0079 in.», po=10' 
dynes/cm», po=0.0012 g/cm'. 

Vv'e will calculate for each frequency separately. 
b(l).   j=lcls: 

Using eq 26, 2=0.61; therefore, use figures 2 
and 3. 

Assume AL^ «>, therefore, by eq 28, Xio/xro^O. 
Enter figure 2 for UM/to|o=0.95 to find xrD= 

0.80. 

/.'jcr. -ntion of PresBuro in Tubes 93 

Best Available Copy 



Enter figure 3 for (30)6=30* to find xro= 1 1; 
use 0.80 since it is more stringent. 

Calculate £ from eq 27 to be 450 in. 
I CSldtilftte AL to be 3.5 in.' 

Compute Xio/Xrt from eq 28 to be 0.029 for V= 0.1 
itt *i Oiarfor V^l in.« 

-*#3«<^ia||^it** af*3W* i* inbdified' riegligibly for  V= 
,'0.I'm.*-/'^"'-M^. ■-■^        ■'■•■-   ' ^ ■     ■ 

Therefore, Xi=460 ini=37 ft for F=0.1 in.» 
Reenter figure 2  for  ilot/^olo=0.96,  xn(Xi^= 

0.29 to find :tro==0.5 
Calculate L to be 360 in.=29 ft for ^=1 in.' 

b(2).   f=l,000cl8: 
Using'eq 26, z==S10; therefore, use figures 6 

and 7. 
' AisiBume Xr/xr=49 (the line volume will probably 
bemall).' '*:/■ ^■ 
"Enteir figure 6 for lfoi/$o|== 1.06 to find «I/C= 
omt^ '^■■"•■'^ -"■■ ■^•: ■■.:.      ■■■"■■ 

Calculate i from eiq 33; 26, arid 27 to be 0.066 in. 
Calculate 4JL to be 0.00052 in.' 
Using eq 34, it is seen that xiolxn ia greater than 

assumed, so that uL}C, and therefore £, is less 
than the previous estimate. Chie may note that 
the estimated length will be so smdl that the 
theory essentially predicts that no transmission 
tubing at all may be used. In fact, the acoustic 
unpedance of the entrance orifice into the pressure 
instrument or the mechanical impedance of the 
pressure instrument itself will probably govern the 
response at this high frequency. 

b(3).   f=10 els: 
UsSog eq 26, 2=6.1; therefore, use figures 4 

and 5. 
Assume AL=<», therefore, xn)/xro=0. 
Enter figure 4 with \h)J^o\-'i^-05 and'y=1.4to 

find xro=0.12. 
Compute L from rq 27 to be 58 in. 
Compute AL to be 0.45 in.'. 
Compute x/o/xro from eq 28 to bo 0.22 for 

F=0.1 in.=, =2.2 'or V=l in.' 
In figure 4, xro is modified to about 0.07 for 

y=0.1 in." 
Therefore, L is reduced to about 4 ft for F=0.1 

Eutor figure 4 for !Wfo! = l-05, and xialxro—2 
to find x7-o=0.018. 

Compute L to bo 22 in. for 1^=1 in.' 
Computo AL to be 0.17 in." 
Coinpuk;   XrJxro'^-^. 
i.n--cr fic'uro   k  to  finti  x7'o=0-007. 

Compute L to be 14 in. 
Compute AL to be 0.11 in.' 
Compute XIOIXTO—^- 
Enter figure 4 to find xro==0-004. 
Compute £ to be 11 in, 
Compute AL to be 0.09 in.' 
Compute  xro/x7xi=ll' 
In figure 4, xn is isodified negligibly. 
Therefore £=about 1 ft for V^l in.' 
To check the phase angle, enter figure 5 with 

X/o/xro=ll, and xro==0.005, to find 4". 
hi4). y== 100 cfs. 
2=61 (interpolation is necessary). 

First estimate from fig\ire 6 and 7. 
Assiune xrfxr=^' 
Enter figure 6 to find w£/<7= 0.068 
As in b (2), compute L to be 1.5 in. 
Compute AL to be 0.011 in. 
Compute xr/xr=9.1 for 1^=0.1 in.'; =91 for V=l 
in.' 
By  figiu-e  6, wL/C is  negligibly  modified for 
y=0.1in.'; 
Therefore X=1.5 in. for y=0.1 in.' is our first 
estimate. 
For y=l in.', we find again that an extremely 
small tube is predicted, so that the impedance of 
the entrance orifice will probably govern. 
For y=0.1 in.' and Z= 1.5 in., estimate [7Xro/16]"* 
to be .01. 
From figure  7   we find that the phase lag is 
negligible. 
Compute xro=0.0009, from (8.2) for fe!=200y. 
Enter figure-4 for X7o/xro=9 to find !W^o|=1.00. 
Interpolating between |{ox,/lo| = l at 3=6.25 and 
IWfo| = 1.05 at 2=100 for 2=61, wo find \}OLIU 
is negligibly affected. 
Therefore £=1.5 in. for F=0.1 in.' 

VII. Appendix. Developmeni of the Theory 

1. Inbroduction 

The difficulties of deriving, elucidating, and 
comprehending the mathematical results of trans- 
mission in tubing from a rigorous point of vicir, 
have led the author to treat the problem in a series 
of somewhat artLlcial step's. Thus in the previ- 
ous sections, the elementary solution was pre- 
sented, to give the reader a general view of the 
piobicm, even though many of the details of tbo 
solution were slurred over. Here steps are taken, 
one at u time, to remove the restrictive assump- 
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tions made in deriving the elementary solution. 
Nevertheless, a complete solution to the problem 
is not obtained. All first-order eflfects are treated 
to the point where the solution is correct to 
frequencies weU into the sonic region. However, 
only an elementary treatment is given for the 
STOond-order diBtortioit, effects. It is felt that 
when these second-order effects become appreci- 
able, the solution presented is of no quantitative 
utilit/ to the instrument system designer or user, 
but 13 only indicative as to order of magnitude. 

>. Theory Corrected for Compressibility 

(InanitesunalOscillatory Pressures) 

"In this approximation, the assumpti'ins are 
Poiseoille's law 6f viscous resistance; small frac- 
tional pressure excess; and that density, pressure, 
and viscosity are related by the equation of 
condition. _ 

For gases one can then write 

or 
dz 

dp 

128 M /) 1 

128 (t ^M, 

(1) 

for Poiseuille's law, and 

(2) 

for the equation of continuity. 
One can eliminate the mass flow M, to obtain 

5 /p ^\^32 dp 
bxKfxbxJ   D^bt' 

(38) 

By virtue of the assumption of small pressure 
excess, and the equations of condition (eq 19 and 
20), we can disregard the differentiation of ojii in 
eq. 38, avid replace it by its mean value. Equa- 
tion 38 then becomes 

or 

where 

or 

yp     32/fo  bp " 
bx^~npoD^ bt' 

(39) 

UtiUx;u\g I'ne previous definition of Xo (eq 10), 
{■(! ;59 becomes 

-„« .--5 !5«c3r;tire in Tti.bes 

b^^/AL K\l_ b^ 
^~-\V   n/Ubt 

b^-TJbt 

AL\o 

(40) 

(41) 

The significance of the new time constent >.ra 
can be understood by inspection of the'definition 
of \, (eq 10). One may note that X^ is a time 
constant based on the tube volume, AL, instead 
of the mstrument volume, V; and that it gives 
weight to the exponent of the polytropic process 
in the tube. It is thus related to the equivalent 
distributed electrical capacitance of the tube. 
The weighting by the exponent, n, arises from the 
fact that it represents the additional "stiffness" 
of the air column in the tube as a polytropic 
spring. 

If, as in the elementary solution, we separate 
our pressure variable into a space and time part 

eq 40 becomes 

^2—p-J5 

or 

where 
Xro=Xro" 

(11) 

(42) 

(43) 

The quantity xro is an attenuation factor based 
on the tube volume. 

Equation 42 may be compared with the corre- 
sponding equation of the elementary solution, eq 12. 
It may be noted that it is necessary that xro be 
small in order for the elementary solution to be 
valid. . . 

Referring now to eq 42, the boundary conditions 
are 
at x=0 

and at x=L 

(seeeq 5, 9, and 24). 

(13) 

(44) 

SS 
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We may redefine a time constant and attenua- 
tion factor for the mstnunent volume, which takea 
into account the poly tropic process as 

Vro=X/oW/ 

(45) 

jl£/0=X/0W> 

At x—h, eq 44 therefore becomes 

as- "^0 At (46) 

T?ie solution to eq-42, which satisfies boundary 
conditions (eq 13 and 46) is 

I   e-*r^{.^To-ho)e"'''+e*T^{4'To+iio)e~*"^ 

whore 

.e*H^n+^n)+«"*"(^n)-V'/o) 

m 
(i+i)i 

(47) 

(48) 

The new ^'s, which shall be referred to as 
attenuation parameters, are 

fro an attenuation parameter depending on 
tube volume; 

^n ail attenuation parameter depending on the 
instrument volume. 

The ratio of the fractional pressure excess at 
the end of the tube fee to that at the beginning 
of the tube ?«if* tben 

"TO 

Jo     fro cosh fro+fro sinh fro 
(49) 

It is iDi?tractive to examine the limiting values 
of this equation. For small fro, the attenuation 
approaches 

io     1+fjo    l+iXro' 
(50) 

tli;    ramo   result   as   in   the   elementary   theory 
(so;; eq 18). 

t'^or smiill  values of  f/o?  the attenuation  ap- 
j)rra->her" 

Hr. 1 
\:0;-h!/'ro 

(51) 

vhich for small fro 

fo 1 + ■■PW 1+^^i 
(52) 

The form of eq 50 and 52 is similar, lii fact, 
for small values of both fro and f/o it is possible 
to define a composite attenuatioa factor % by the 
relation 

or 
X=XJO- 

X=X/o+ 

Xro 

Xro 
[61«J 

(53) 

such that the real magnitude of tha attenuation 
is approximately 

"[l + X^""' 
(18) 

which preserves the form of the elementary 
solution. 

Equation 18 can be interpreted as meaning that 
the "proper" time constant of the system can be 
obtained by adding to the n weighted volume of 
the instrument, l/[6]^ of the m weighted volume 
of the tube, and substituting this in the elementary 
formula for the time constant of the system. 

In principle, for larger values of fro or f/o, a 
coupling coefficient (of approximately unity) could 
be introduced as an addition to the coefficient 
l/[6]'/^, which wovdd vary somewhat with the rela- 
tive magnitude of fro and f/o, to permit strict 
preservation of the dementary form. It is, how- 
ever, simpler to compute attenuation from eq 49. 

For liquids, we start from eq 38. 

^\nhxj   D'dt' (38) 

As before, with the aid of eq 22 and 23, we 
obtain the result 

Xro^ 

or 

(54) 
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where 6-6- 

55) 

,      , '       .\XTo=Xro«. 

■ The l>ounclaTy condition at at ==0 is 

aud &tx=L 

or 

where 

i.,i=-(^Hii 

(13) 

(36) 

X/o=Xofe ) 

Xro=?X/ow) 
(57) 

(seeeqS, 9, and 25). 

The form of eq 54 and 56 is identical with eq 42 
and 46, with the difference that the coefficient in 
the X's is the very small compressibility factor 
rather than the reciprocal of the exponent of the 
polytropic process. Physically, this simply means 
that the liquid is a spring of almost infinite stiff- 
ness compared to t<he gas. 

Because of the formal identity of the equations, 
the previous solution holds in toto, with the modi- 
fied value of Xro. The following interpretation is 
now possible for the elementary result that there 
is no attenuation with liquids. The Xo tim,e con- 
stant of elementary theory did not take into 
account the effect of liquid compressibility, which 
is small. If, however, Xo is weighted by b (i. e., 
'K—b\) then the same attenuation curve holds 
for both liquids and gases, but with liquids we 
()' crate on the very beginning portion of the atten- 
uation curve for gases. 

There is one complication that should be con- 
sidered in liquid tube attenuation. Because of the 
small compressibility of liquids, it is often possible 
ilu:1 the flexihjlity of the tube gives rise to a com- 
pressibility comparable to that of the Lv^uid. The 
simplest way of taking into account the flexibility 
of the tube is to define and replace the compressi- 
bility facLor of th(^ liniiifl by an effective valii'^. 
6 ::nd I-. 

(68) 

where 
Po=niean liquid pressura: 
PJ—ambient external pressure (ueually atmos- 

pheric) ; 
i5= elastic modulus of the tube material; 
«=wall thickness of the tube. 

In the derivation of eq 58, the assumption has 
been made that the thickness of the tube wall is 
small compared to the tube diameter. 

3. Theory Corrected for Finite Oscillatory 
Pressures 

In this section, we will determine the effect of 
finite fractional pressure excess on the attenua- 
tion in a tube. We assume only that the 
Poiseuille velocity distribution holds. We will 
show that the effect of finite pressure excesses is 
to excite higher harmonics, resulting in a distor- 
tion of wave form, and to raise the mean pressure 
along the tube. The higher harmonics are excited 
because of the nonlinearity of the equations. 

The method of solution selected will be that of 
e-xpansion in harmonic series in which the excita- 
tion of sum frequencies only are considered and 
the difference frequencies are neglected, so that 
the solutions obtained are only valid for the lead- 
ing term of each harmonic. The second order 
term in the variation of the mean pressure will be 
estimated separately. We will assume open func- 
tions of the distaribe coordinate for the coefficients 
of each harmonic term of the series and show that 
the expansion is valid for moderate values of the 
initial pressure excess. It is obvious that these 
distance dependent coefficients must be the 
solutions of second-order differential equations 
in order to provide two sets of adjustable con- 
stants to satisfy the boundary conditions at the 
two ends of the tube. However, by considering 
the solution for an infinite tube (for which only 
one set of boundary conditions is required) we 
shall be able to discuss the question of convergence 
of the solutions. 

For the purposes in view, it will turn out to be 
convenient to derive the equations on a density 
basis. Density and pressure arc, of course, re- 
lated through the equation of condition. 

7'Tf!Z?Ai-'o an Tubes Best Available Co 
97 

H> 



(38) 

For gaaes, we start from 

By algebraic ihanipulation, in which eq 19 and 
;^20aretu8ed;to^lmumte'-viscosity and pressure, we 
obtain ^ 

or (59) 

(60) 

a nonlinear partial differential equation. ^ 
Assume as solution for the density ratio 

where n< is the fractional density amplitude ratio 
^.ofeadii harmonic (functions of x). i 

!At the m6m«at assume that the applied pressure 
wave has all the mathematical properties necessary 
to make the Fourier expansion of eq 60 valid. We 
will discuss this point again. 

When eq 60 is substituted in eq 69 and the 
coeJGficients of like terms in the respective har- 
monics equated, the following system of differential 
equations result for the coeflBcients n<- 

ri('^yni=^^(ni'»o+itou.) 

y (61) 

i(fy) iji=2dP ivtrio+rH-ir)i+ ' ■ + 

sr coni- The coefficient i7o(=l) has been added 
pietoness. 

From eq 61 it can be shown that the coefficients 
T)i for an infinite tube are equal to 

The solution of these equations consists of a 
complementary part that introduces two new con- 
stants for each coefficient rn, and a particular 
solution that depends iipon the solutio-us lor co- 
efficisnts with lower values of i. The latter part 
represents the excitation of higher sum frequency 
modes. 

Detailed investigation of the convergence oTthe 
solutions for the various coefficients leads to the 
following conclusions: 

The differential equations of eq 61 will admit 
physically admissible and convergent solutions for 
any bounded periodic pressure or density wave 
at the origin because (1) either the wave at the 
origin has a derivative that is of limited variation, 
in which case the solution of eq 59 in series (eq 60) 
is always vaUd; or  (2) if it does not, spatial 
attenuation of viscous waves occurs so rapidly 
for higher harmonics that the wave wUl have a 
derivative of limited variation at a short distance 
beyond the origin, so that as far as effects down- 
stream arc concornod, the given input wave can 
be replaced at the origin by a similar looking 
function (i. e., a finite polynomial instead of an 
infinite Fourier series)  whose derivative is of 
limited variation.   As illustrations, we can replace 
a square wave by its first few harmonics, or a 
Weierstrass  function   by   a  smooth   integrable 
function.   In simpler language this means that 
in a viscous transmission tube, detailed or sharp 
wi^los in the initial disturbance (higli harmonics) 
are not transmitted. 

The more practical question as to the rapidity 
of convergence of the series solution for the 
attenuation of a given entrance disturbance can 
be answered approximately by recourse to the 
solution for an infinite tube, for which only one 
set of boundary conditions must be satisfied. 

Vi 
=-^,e-(o+t«"')i'_ 

(1X0-1-lX2[i-ir") 

(l><0+lX2li-2]"=) (2Xl+2X2[i-2]"-0 
(62) 

^,-3^?e-^^+"-^'"> .onm+- (TX0+TX2l?=:3]V*) (2XH-2X2[i-3]"^) (3X2+3X2[i~3]"^) j 
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where 
X (63) 

Here ni» the constant of integration for the com- 
plementary solution of each vt, and y is a dimen- 
sionless; distance variable. 
* Subslitutmg the value of the coefficients from 
eq 62 into eq 60, we obtain the result that, if at the 
ori^ (y==0), the density is written in the form 

( 

rri'Ji 
X0+1X211P" .) 

,ij«i + 

_     wii  
.'"~1X0+1X2[2]"' 

mm 
(lX0+lX2lin^XH-2X2111)"^. 

,)c«'"+ . . . 
(64) 

at any other point y, the density wave will be 

( ."'^^   :r-ixo+ix2i2p^ ►(65) 

Wi^g-^'-^'"'"^ n/ (1X0+1X 2[ir/*) (2X1+2X 2[1] 

+ . . . 
Our previous conclusion permits us to assume 

that expression 64 is manageable (i. e., of limited 
variation with a time derivative of limited varia- 
tior) so that it must converge.    We may therefore 
infer the following relations: 

For large enough i 

0< 

11 

o< 

Vi 

<1 

(66) 

Tile last line in eq 66 contains our desired con- 
clusion. We can infer from it the maximum num- 
ber of terms that must be carried along in order to 
know the distortion to within any desired ac- 
curacy. If we assume, for example, that we are 
interested in only those harmonics whose content 
at the end of the tube is greater than 1 percent of 
the applied first harmonic, we can neglect all 
harmonics greater than the one for which 

m .-^ratn'":. 
\-n\ 

=0.01, I 

or 

Sijc L 2 J =,0.01. 
'Ill ; 

>■ (67) 

For most practical problems, it can be shown 
that fuiequate information can be obtained from 
a laaowledge of the first and second harmonic, and 
rarely, the third harmonic. 

To compute the harmonic distortion for a 
volume terminated tube, we go back to eq 61. 
The solution for the density wave becomes 

,,i=l+(n,+€»-f-5?,_c-'')c>'+ 

(^,+ct«"'''-n!+e=»»+?,-C-I2'"''- 

?ft_C-="')c.^+(5J3+cP'"^- 

/3-2[2]-'\ (. 
A 2i2r ; nj+ni 

-i-r[21"')y_ 

-   (68) 

Here Vi+, Vi- represent Ihe two sets of integra- 
tion constants necessary to take care of an out- 
going and reflected wave in the tube. They are 
fractional density excesses.   . 

We wll consider the boundary conditions to be, 
for the moment, at a;=0 (?/=0) 

r,= l + me'"'+V2e^"' + ^3e^-"+ ■ (69) 
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wh0rt %, is the amplitude of each input hftrmonic 
S^^fe^ensity wave (it differs ^-^^l^^^ 
retifeseats both the input harmonic andlhe excita- 

tion atftplitudes of that harmomc), and at 

an  
"fia 

(70) 

^^?^:p^2;S;:^tsetwobo.^a..cojKii- 

tions leads to the result that at the end of the tube 

■. -i-i^r. ■'• -■^■•^      *n      :_i 
n-l +L'"^pn cosh ^Tb+^/0 sinh ^n. 0 e'-'-f 

l2]"Vi 
L''*I^^w cosh 181^'V«+5^-^/0 sinh 12]"VTO 

-+ 

V^' 

m'Hr.* ((^Bh 2^^-cosh [2]>/V«0 +2^V^"«2]- si^ 2^.o-sinh [2]"Vro) + 
12J   fro   ^coea -V^o   fal'/'^^U/a' (CQsh 2i^^-C0sh [2lt^ro) -.— 

, sinh ^ro)* 
„.    e«-' + 

2([2]'-V«. cosh l2]'^V^+2^n> sink I2j'^V^) '>ro conh ;^+^.o 
This result is for a given input density wave.      pressure wave is given by 

It will be shown later that the results shown in 
eq 71 are only valid when the equation oi condi- 
tion is isothermal (i. e. tie "polytropic" coefficient 
is unity).   It therefore foUows that if the input ^^^^^^^^ 

(71) 

1= 

the wave at the end of the tube is 

(72) 

L^+^s 
r^^(cosh2^„,-coshI2P'V^)+[2P'VjtJ>£^ 

Qmh[2pit^^4-i^?.(cosh2i^T^-co3h[2P^»^roJ J 
2(tf>n cosh 4'n+^ia smn V'yo)* 

For liquids, we can start from eq 38 

,ut + 
(73) 

d/p^\_32a£ 

By the use of eq 22 and 23, we obtain 

dV_2X7i) ^ 

where ^ _ 

Xro— "T fe\, 

(38) 

(59) 

(55) 

The equation is exactly the same as before with 
the single modification that 1/6 is substituted for 
V and m, so that our previous result (eq 73) holds. 

The change in mean density along the tube o^n 
be estimated from eq 59 and 70.    The equation 
of motion (eq 59) requires that the second denva- 

: ;ve of the mean square decsity vanishes, or that 
the first derivative is constant.    However,  the 
end boundary condition (eq 70) requires that the 
first derivative of the mean square density van- 
;nVi-^3 at the end of the tube, and therefore along 
tlin OP tiro tube, so that the mean square density 
and  therefore  the  mean  square  pressure  must 
remain   constant  along  the  tube.    The  leading 
oarfc o.' the second order change in mean pressure 
■ risP3    Ihcrcfore,  from  the steady state portion 

10  •""—   TiV/   

of the square of the amplitude of the fundamental 
It can be simply shown that the increase m mean 
pressure at the instrument is given by 

foAp[l + |loL/&)r]/4 
4. Theory Corrected for Acceleration 

In this section, we will remove the main re- 
strictive assumption—the assumed Poiseuale ve- 
locity distribution. In order to do this, it is 
necessary to go back to the equations of hydro- 
dynamics. Since the complete theory is too ex- 
tensive to be treated in this paper, we will simply 
state the results. 

It is possible to take the Navier-Stokes equa- 
tions of hydrodynamics (the equations of mo- 
tion\ combine them with the equation of conti- 
nuity, and with the energy equation, which repre- 
sents a detailed energy balance among thermal 
and kinetic energies, to arrive at the Kirchoff 
equations of sound. (See Rayleigh, Theory of 
sound, volume 2, article 348.) These equations 
are valid to first order. This procedure was fol- 
lowed, making no assumption as to the form of 
equation of state for the fluid, and the following 
results were obtained for the attenuation param- 
eter, and the velocity in an infiniUi tube: 
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r i+ 2(7-i)^(g2:) 

W' 
ff 

2^. (ft I) 

The attenuation parameter in eq 74 is to be 
interpreted as before (see eq 47) as the exponent 

(74) 

where 

i7^=(l 

(75) 

and 

0 is the Laplacian valocity of sound m the 
fluid; 

p and /i are arguments of the Bessel functions for 
unit tube radius; 

Jo and J, are the zero*" and first order Bessel func- 
tions; 

«ro is the mean Prandtl number of the fluid 

(-'^> 
Kn is the mean thermal conductivity of the 

fluid; 
c«, is the mean specific heat at constar.t pres- 

sure of the fluid; 
J.0 is the kinematic viscosity of the fluid 

(=S> 

d.*rf. 
in the form e ,   . ,     i     t 

Equal 64 and 65 are of doubtful value for 

(V8) 

or 

These restrictions are violated at high vacuum 
or very high frequencies. 

It is instructive to evaluate eq 74 and 75 for 
smaU values of the Bessel function arguments. 
They become 

(77) 

^ ^riy ap 
'^~    128^0 52 

which are precisely the results assiuncd in eq ! 
and 42 under the condition in eq 42 that the 
"polytropic" coefiicient is unity. This arises 
because the value C/T in eq 77 is the square of 
the Newtonian velocity of sound, which for gases 
is Po/Po. Eq 74 and 75, which take into account 
the heat conduction, thus demonstrate that, when 
the previous results are vaUd, the equation of 
condition is the isothermal. At higher frequen- 
cies the modifymg tenn in eq 74 may be regarded 
as the "polytropic" coefiicient. To brmg this 
out explicitly, eq 74 and 75 may be written as 

uvoy 
(*f)" 2(y-l)J,(i 2)^ 

W) 
Q= 

rD*  bp 
'\28iK,dr 

if ^(ij) 
(78) 

We may regard eq 78 as an extended definition 
r,. thn fittenuation parameter ^r, and as the 
modified velocity that replaces Poiseuilles law. 
^t .., .iH'reforc used without the zero subscript, 
wliich in used to denote-tlie Poiseuille regime. 

If V/-C now bring in the end boundary condition, 
nnrncly s 

"    mpo pi' 

for a gas, or 

Q- 

■■nv, oi Pressure in Tubos 

(24) 

(25) 

iOI 
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for a liquid, we obtain 

for a gas, or 

dl_   i28'/«oVjo>6£ 

for a liquid. 
Let 

f   Cf)'   1 
- 8 (79) 

(80) 

X/' 
128MaV«I^' 

(*f)" 
(81) 

for a gas, or 

128jioy«L& 
X/= x5^ 

(82) 
' M)'  1 
^%~ 

for a liquid. 
We have thus corresponding extensions of our 

definition of x/ to cover all frequencies. The 
limiting value of xi -or small arguments obviously 
becomes the previous value for x/o- 

Since the only modification hai been to extend 
the definitions of ^T and ^/ without changing the 
form of the equations to be solved (namely eq 
42 and 46), the previous result (eq 49) is strictly 
valid. The results however are now correct for 
fi-pqiiencies well into the audio range. 

It is not possible to use the results of this section 
to extend the range of validity of the calculated 
disioitioii for finite pressure amplitudes. To do 
this rigorously would roquiro: going back to the 
fjGcond-ordcr terms neglected in Kirchoff's cqua- 
lionB, wbich is an extremely sirduous procedure. 

It mu8t therefore be concluded that the distortioi 
calculated in sectioa (3) is valid whenever the 
PoiseuiUe regime holds, v^-hich also means that 
the "polytropic" coefficient in the distortion naust 
be taken as unity. The distortion may be validly 
calculated from eq 73 when 

t? 

^<1 
4>'o 

(83)  -' 

and  when   the  applied  pressure  amplitude   is 
sufficiently small at the applied frequency (suf- 
ficiently small enough Reynolds number) to per- 
mit laminar flow. 

5, Theory Corrected for Finite Length-End Effects 

There is one additional factor that must be con- 
sidered for completeness—the end effect. An 
estunate of its magnitude will be made for the 
Poiseuille r^ime. It arises from the fact that it 
takes an appreciable lengt;h of tubing to set up 
the Poiseuille velocity distribution in the trans- 
miraioii tuber The character of the entrance flow 
is that the axial velocity is flat at the entrance, 
gradually developing an approximately parabolic 
(laminar) boundary with a core of uniform veloc- 
ity, until the approximately paraboUc distribution 
fills the tube. It is evident that boundary layer 
theory may be used, and for our purposes an ex- 
tremely crude boundary layer theory. 

We go back to the equations of hydrodynamics 
and make the following assumptions: (1) that the 
entrance flow is incompressible, (2) that the vana- 
tion of pressure in the radial direction is negligible 
in the entrance portion, (3) that quadratic terms 
in velocity are negligible in the boundary layer, 
(4) that the core of the velocity distribution is 
potential. 

For our purposes we need only write the equa- 
tions of motion for the potential core as 

V"*"^' dx ~    po i>x 
(84) 

where «, is the axial velocity in the potential core. 
Let 

where ^ is the -velocity potential 
then 

(85) 

or (S6) 

y<+2^: Po 

Joumcd of B®s®CEcli 
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/ yob.ere/(0 is aniarbitrary function oi time. 
^?^q (86) representathe Bernoulli integral, 
can be written in the fonn 

It 
p(0,t)=p(J.,t) -2.4l{^ PoU •> 

162 
Tf 

Re 
PoTl- vyuj 

,p(x,t)+ipo«.'=/(0-^,'^ i'-ii. (87) 

- >-The boundary conditions are a prescribed pres- 
sure variation at »=0» the entrance, with a flat 
velocity proffle..(tip=« where ,it is the average 
velocity across Hhe section) pnd a parabolic dis- 
kibution of velocity at some point z=rdown- 

strea< ,„ (^!^.=tt\   The assumption of incompres- 

siWe flow makes « the same at both sections, 
thiase conditions lead to the result that 

p(0,0=p(U)4-|.oU«+^(^,t)-^S''^- (88) 

If we now refer to the arguments given in Gold- 
stein ' JModem Developments in Fluid Mechanics," 
vol. 1, pp 299 to 308 for the static case, we find 
on p. S02 that 

P(0)=1>(Z)+| Pot?+^^^(i-.0575f K,)-   (89) 

where R, is the Reynolds number. 
It follows from these two equations that the 

leading term for the entrance loss in the oscillatory 
case is the usual pot? loss. 

We may therefore adopt the exact static result 
(see p. 308 of Goldstein) that 

where the last term represents the Poiseuille vis- 
cous resistance. 
; Therefore the effect of the entrance is to cause 
a pressure drop given by 

the exact coefficient 1.2 being unimportant for 
our purposes. We will regard eq 91, not, as being 
exact, but as indicating the order of magnitude 
of the entrance correction. 

If we substitute the Poiseuille velocity into eq 
(91) and evaluate the pressure gradient of the 
Poiseuille distribution from eq (47), we arrive at 
the result that the pressure excess just inside the 
tube {' is approximately given by 

€' = «o^^-'-fe7o V^+^.otanb^J ^' 

Equation 92 is the desired result. It shows 
that the approximate effect of the entrance is lo 
distort each input hannonic. It can be inter 
preted as meaning that the effect of the entrance is 
the same as if it did not exist, but with the funda- 
mental harmonic generator replaced by a funda- 
mental and a second harmonic generator. The first- 
order terms are thus left unaffected, and the only 
equation requiring modification is the at,tenua*od 
second harmonic. 

If eq 92 is used as the input pressure for a pure 
sinusoidal input in the fluid conduit, eq 73 becomes 

l=kJ[j 
{2Y'HT^^I 

^^c03h^n.+^/osinh?;;J' " + i2FVroCOshl2]"Vro + 2lA/o sinh [2l"Vro 
y,Vut X ■) 

r ^'n,([l+^^'] cosh 2iA«-iV*-cosh[2]"V7x,) + [2]''Vrov''/o([2]' '[l-N'] sinh 2^ro- 
si^^"[2r'V^)4-^?o"(["l- N'] cosh 2^n.-iV'-cosh [2]"VTX)) 

2(^To cosh ^n+iio sinh ^/ro)* 1 
(93) 

+ 
whero 

N' 32 
(94) 

"0 

N h a dimensionless parameter. 

Th.\  LiccotKi   term  in  oq   93   gives  the  second 

Actually from tlie condition under which eq 93 
is valid (namely eq 83), the vaiuo. of N" must^be 
small, so that it is a matter of indiflerencs whetner 
it is used in eq 93 or not, and we will therefore 
neglect it. 

6. Summary 

There only remains the task of recapitulating 
the  pertinent  results  and  presenting  them  for 

;i!,f~.u-?.ioii Oi ProsBUJO in Tubes 
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computational coavenience.   To -accomplish this 
some minor notational changes will be made. 

In sq 49, it was shown that the complex attenu- 
ation of the fundamental is given by 

cor,. 
fe TV-r cosh ^r+^i Binh i/r 

where ioL is the complex amplitude of the frac- 

tional pressure excess of ths fundamental at tho      t 
end of the tuba, and the subscript 0 refers to ths 
fundamental. 

In eq 93, it was shown that the complex ampli- 
tude of the second harmonic distortion due to a 
pure sinusoidal pressure input is given in the form 
of its ratio to the input amplitude of the funda- 
mental by 

(96) 

wbei*3 l/r, is the complex amplitude of the frac- 
tional pressure excess of the second harmonic at 
the end of the tube; ^^ro and ^/o are the values of 
the attenuation parameter computed on the basis 
of the PoiseulUe velocity distribution. 

In eq 76, it was shown that eq 95 is valid if 

(07) 

In sq 83, it was shown that eq 96 is valid if 

g<l (98) 

In eq 48, the attenuation parameters were de- 
fined as 

(99) 

In eq 78, 8i, and 82, with slight modifications 
for generality, the attenuation factors were deter- 
- vtned to be most generally 

'^_^2(7-l)J,(5f)l 

32i'ow/£V 
~D X 

(4)' 
2J, 

_32vo«/LY V 

- (100) 

(4)- 
2Ji 

D 
"2' 

H)._, 
^-?r«/o( ^^ ) 

while the attenuation factors for Poisei 
are 

_ 32^00/xy     1 

Xn' 
S2»ve /:& V _Z 

^   C?   \DJ AL 

(101) 
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From eq 75 

A2=a-i)2L2roJ 

(102) 

Hers CT iaf the velocity of sound appropriate to tho 
tube; 

CT is the velocity of sound appropriate to the 
iV'     instrument volume. 
1   '-.    -    '.'',''"'       '    .     '      ' - 
For computational purposes, the attenuation 

'actors can'-be-imade less complicated by the- 
introduction of two new functions. 
Let ;  ■-. ^ 

F,=- 

A 2 •'<'(* 2)     . 

(103) 
and 

F,= 
l+(7-l) 

9 
D      y    /       D\ 

where Fi and F3 are correction functions to the 
Poiseuille attenuation factors. 

The attenuation factors then become 

_32KO« / AV 

xr- ■'-^KS)'ay^'- <-' 
In order to obtain consistency with our previous 

rcsuUa, we introduce the following definitions: 
For a gas: 

It can be shc-vvn both froir kinetic theory and 
from c>q)erira.';ntal data that the value of the 
Fran It: number for a gas is approximately unity. 
Diir(;!'unce:i from unity are unimportant for our 
purposes Therefore g and h in cq (102) may be 
i<>frarded as equal. We may therefore define 
Fi <ind Fi iX'i 

2(7-l)Ji(Af)^ 

h. 
V ./.(4) 

8 

«(1^ 
h-^j, 

?/'« (.f,.> w,(t2) 

*2 ■'» W)] 
(105) 

These functions therefore depend only on two 
variables, instead of three as in eq (103). 

Equation 78 shows tiiat the velocity of sound 
appropriate to the tube for eq 104 is the Newtonian 
velocity, which for a gas is {pojp^^. Equation 81 
indicates that the velocity of sound appropriate 
to the mstrument volume for eq 104 is the "poly- 
tropic" velocity or [mpo/po]'*- Therefore for a gas, 
the attenuation factors may bo computed from 

where Fi, Fj, and h -K may be computed from 

eq 102 and 105. 

It b convenient to utilize one more variable, 
the ratio XIIXT, which from eq 106 has the value 

F.(h^,y) (107) 

For a liquid: 
It has been stated that y can be satisfactoriJy 

taken as miity for a liquid. This similarly mr,kes 
the functions Fi and Fa (see eq. 103) independent 
of g (or really of the Prandtl number). In that 
case, the definition of F; and Fs for a ges (eq. 
105) holds for a liquid, if 7 is taken as unity. 
Continuity of definition is thus provided for both 
liquid and gas attenuation. 

Equation 78 shows that the velocity of sound 
appropriate to the tube for cq 104 is the Newtonian 
velocity of sound.    However, consistent with cq. 

o? Fi'03stire in Tubes 105 

Best Availabsa Uoj. 



55 and 58, the Newtonian velocity must be based 
on the effective bompresaibility of the liquid and 
iube. - Kwn eq 82 It i8;Been that the velocity of 
^und ajppropriijte t<> tlie instrument volume, 
!lbwevfii\^!i^:bMe^ on ^thd; ^eaJ compressibility of 
the:^ fitiid ^(the hdjiierence between adiabatic, 
''ipol5^lo]^i'f^^'i iaotheraial cohipressibihties is 
a^aiafeS Aeigligible). It has been assumed that 
the ctfjoipressibility of the instrument volume is 
included itt-tKe definition ojf the effective instru- 
ment ' volume^ ^tt follows therefore that the 
attenuation; factdrs for a liquid can be computed 

■from ■ 

x,=32^t<^(^J^F.(Af,l)F.(Af,l) 

and 

.,o   u    /^i\Yi J-Po-P"   ^  5^"l 
V (i09) 

It is now possible to compute the real attenua- 
tion and lagging phase angle for the first and 
second harmonics. If the attenuation ])arameters 
in eq 95 are regarded as the low frequency param- 
eters based on the Poiseuille diatributiorx. (i. e. the 
ones with zero subscripts), then the real attenua- 
tion and lagging phase angle can be computed 
from 

(108) 

1/'^. 

■- ■ :■    ■    '   . 2 '  

cosh [2xn)]"'+C08 [2xn,l'^+(^)[2X7x,l"^(sinh t2x7x.]"'' 

sin [2XTO]"^ +(^Jx«)(cosh[2xn)]"'-cos [x: 

The zero subscript means that these are the 
values for the Poiseuille flow regime. Graphs of 
these equations are quite useful for computing 
attenuation. Since xro is proportional to fre- 
quency (see eq 101), while x/o/xro is proportional 
to the ratio of instnunent volume to line volume 
(see eq 107), a family of curves of attenuation or 
phase angle plotted against xro for different values 
''^ X/o/xro are frequency response curves for 
different volume ratios. These curves are pre- 
sented as figures 2 and 3. 

At higher frequencies, where the functions Fi 
and Fz take on values appreciably different from 
liiiij-,   the   oxpressions  become  extremely  com- 
plicat;.!.    It is  therefore of utility to  examine 
their ui";'! i.'(vquency behavior. 

At h"'-;i ircq:;cncy, v,'3 will usii the appro.xi- 
niation 

-cos [Xro]''^) 

tanhr^-tanr#^(^)m'^X--^M^^ 
(tan 5o)o^-=     , ^^x.^ rx^T'V;..>, fe]"-tan [^J) 

\XTO> 

(110) 

2J,(y)^l    2j 
yMy)   y"   y 

(xll) 

If we define a new parameter z (related to h T\ 

which characterizes the fluid regime, as 

^" (112) 

(113) 

'yiU) 

z 
4.0^ 

a frequency parameter wi/C, where 

c 
~Xro2' 
L 87 J 

1/2 
j 

and a volume ratio R defined as 

/?= 
Xro 

, it can be shown that at high frequency" 

Jo^racd ol Rsacciirch 
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l+cos -^- —JRI 

2 "1"'* 
72^\   .    2u>L,E' /2o>LV A     ^^^ 2a,L\ 

Ism -^ 

(115) 

This is tHe "soliitioki for the ;jndainped Acoustic 
resonance of a tube wid instrument. 

In computing these quantities in eq 115, it is 
assumed that xro is smaller than xn Za, or that 
XTO is small bonijpai^d to wL/C. In the solution for 
the undaruped case, the phase angle lag is usually 
r^arded as zero up to the first resonance. How- 
ever, the given expression permits first-order com- 
putation of the phase angle lag valid for values of 
XTO small compared to uL/C, even though the 
overshoot is given as undamped.   Practically, this 

means for values 4 --^ ['" of the order of one 

or less. 
These quantities are presented in figures 6 and 

7.   It can be shown that they are valid for values 

of z> 100, whereas the low frequency curves (figs. 
2 and 3) are valid for s<l (see eq 98). We will 
state without proof that the parameter z, which 
characterizes the flow regime, is closely related to 
a damping coeflBci^t. Figures 2 and 3 will 
therefore be referred to as the large damping 
curves, and figures 6 and 7 will be referred to as 
the undamped curves. 

Unfortunately, in many instances, a knowledge 
of the highly damped behavior (figs. 2 and 3) and 
the undamped behavior is not sufficient. Curves 
have therefore been drawn for a value of z about 
"half-way" between 1 and 100, namely 2=6.25 
(see figs. 4 and 5). In order to preserve a scale 
proportional to frequency, the quantity xro is 
used as abscissa. 

These curves were computed from the formulas 

^1 
cosh 2c,-hcos 2ca+2c3 sinh 2ci—2Ci sin 2C2+(cl+cl) (cosh 2ci—cos 2C2) 

tanh c, tan Cj+Cj tan Ct+Ct tanh Ci 

r 
tan 5o=- I+C3 tanh Ci—Ci tan Ca 

(116) 

where 

c,=[l-sincd'«[^|F,|]" 

C2=[H-sinc,]'^[^|F,iJ' 

C3-(cos Ce[l-sin c,Y"-s\n Ce[l+sin cJ'O [^ {F^lJ' ^ l^^l 

c,= (cos ce(l + sin c,]"2-sin c,[l-sin c,V-") p|? IF.lJ' ff^ l>?^^! 

cos C5 

r 
3. 

'm 
OSf 

'^"^/X 
'^i>/e 
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sin «5=|7^ 

u C08C,=|jp-| 

9s 
BUI "•   ||r,| 

Enuadon 116 is valid at aU frequencies, and is distortion at low frequmcies (neglecting the end 
p^SrilS^er expla^tion for com- eff..t) .re P^^-j^^-^-f^^ ^-   ^'^ ''^ 
li^ess and flie use of those with great compu- mvila med ra .heir computation .ms 

tational fortituiie. ■      ,.      ■ , . .• v,/   > •^ 
T^e ampUtude ratio and leading phase angle 1/^''^--^ (^Y^^^^^M' (^^^^ 

(angle of lead on the time sc^le of the fundamental l^^oj   '2 *^ &, / Kc^+icJ 
where both the fundamental and double frequency 
waves are cosine terms) of the double frequency      where 

c.=cosh [2x> cos t2x.r-cosh [x«lj- cos lx„]-+g M-(l2l- sinh {2x.l- cos [2x.]-- 

[2r cosh [2x,,r sin [2x«,r'»-8inh lx«r^ cos lx«l'''+cosh lx«,]"^ sin [xr^V'^ + 

YXfoY^^(_sinhl2x«]'^8in [2x«r'»+8inh {x«r'* sin [xro]'") 
\XTO/ 

^=sinh I2x.r sin [2x«l--8inh Ixn.]- sin [xnY-+^ [x«r-(l2r smh [2x.P-cos [2x.r«+ 

[2^^ cosh [2x«l'^ sin [2x^]^'*-sinh [xioV' cos Ixwl'^-cosh ixi^l"' sin [xro)"^ + 

CxioV ^^ (cosh [2xn>l''' cos [2xji,l"'-co9h Ixrol"* cos [xToV^ 
\Xro/ , 

c.=co8h [xr.Y'^ cos [x^?'*+f- lx,.]''^(sinh [x,.]"^ COS lxn.]"*-cosh IxroY''sin [xr.D 
XTO 

c.=9inh Ix^l'" sin [x™l"'+^ [x«]"*(sinh [xn>l"' cos [xn,]"'+cosh [x^]^'' am [xrol"^ 
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